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Explicit Motion of Dynamic Systems with Position Constraints 
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Although many methodologies exist for determining the constrained equations of motion, 

most of these methods depend on numerical approaches such as the Lagrange multiplier's 

method expressed in differential/algebraic systems. In 1992, Udwadia and Kalaba proposed 

explicit equations of motion for constrained systems based on Gauss's principle and elementary 

linear algebra without any multipliers or complicated intermediate processes. The generalized 

inverse method was the first work to present explicit equations of motion for constrained 

systems. However, numerical integration results of the equation of motion gradually veer away 

from the constraint equations with time. Thus. an objective of this study is to provide a 

numerical integration scheme, which modifies the generalized inverse method to reduce the 

errors. The modified equations of motion tbr constrained systems include the position 

constraints of index 3 systems and their first derivatives with respect to time in addition to their 

second derivatives with respect to time. The effectiveness of the proposed method is illustrated 

by numerical examples. 
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1. Introduction 

The motion of mechanical or structural systems 

is often constrained by given trajectories or condi- 

tions. The constrained motion requires the con- 

straint force provided by the nature [br satisfying 

the given constraints. Gauss's Principle defines 

the constraint force as the minimum force of all 

forces that are required to satisfy the constraints 

or pull the state variables into the prescribed 

trajectories. 

The constraint force must be explicitly cal- 

culated and provided such that the state variables 
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do not violate the constraints. But most of the 

methods ['or describing the constrained motion 

depend on numerical approaches such as the La- 

grange multiplier's method expressed in a differen- 

tial/algebraic system (Gear and Petzold, 1984; 

Gear, Leimkuhler, and Gupta, 1985 ; Gear, 1986 ; 

Gear, 1988). Mathematically, the equations of mo- 

tion for constrained systems based on the Lagran- 

gian formulation can be expressed in differential/ 

algebraic systems F(t, y, ~') =0,  where F, y and 

~" are n-dimensional  vectors. They also involve 

the Lagrange multiplier functions. The formula- 

tions are based on an overdetermined system of 

equations including time derivatives of the con- 

straints and stabilization with respect to the 

differential constraints via additional Lagrange 

multipliers. These methods require much efforts 

in numerically determining the multipliers. 

Gibbs-Appell  (Appell, 1911 ;Gibbs,  1879) me- 

thod requires a felicitous choice of quasi-coor- 
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dinates and is also difficult to use, when dealing 

with systems having several tens of degrees of 

freedom and several non-integrable constraints. 

Kane (1983) introduced an analytical method for 

nonholonomic systems based upon the develop- 

ment of kagrange equations from D'Alembert's 

Principle. Though his method is usually less tedi- 

ous than the computation associated with La- 

grange multipliers, it is difficult to compute com- 

ponents of the acceleration vector. It also gets 

rapidly more complicated with increasing num- 

bers of degrees of freedom. The effectiveness of 

Kane's method was compared with other appro- 

aches in the study of the constrained motion of 

multibody systems (Park et al., 2000 ; Park et al., 

1997). Passerello and Huston (1973) introduced 

a computer oriented method similar to the meth- 

od of the orthogonal components of the matrix 

associated with the constraint equations, which 

reduces the dimension of the dynamical equations 

by eliminating the constraint forces. In 1992, 

Udwadia and Kalaba (1992) proposed explicit 

equations of motion for constrained mechanical 

and structural systems. The generalized inverse 

method by Udwadia and Kalaba was the first 

work to present the explicit equations of motion 

for constrained systems since Lagrange. This me- 

thod has advantages in that it does not require 

any linearization process for the control of non- 

linear systems and can explicitly describe the 

motion of holonomically and/or  nonholonomic- 

ally constrained systems. 

The constrained motion can be described by 

numerically integrating the differential equations 

by Udwadia and Kalaba, and the numerical 

results must satisfy the constraints during the 

integration. However, the numerical results grad- 

ually veer away from the given constraints with 

time. From the viewpoint of numerical integra- 

tion, it is necessary to devise numerical methods 

to pull the deviated state variables into the given 

paths. Because the generalized inverse method 

was based on the only second derivatives with 

respect to time of the position constraints, the 
errors in the satisfaction of constraints are caused 

by the neglect of the position constraints as well 

as their first derivatives with respect to time. 

Accordingly, an objective of this paper is to 

present a numerical method which modifies the 

generalized inverse method to reduce the errors in 

the satisfaction of the constraints. The modified 

equations of motion for constrained systems in- 

clude the effects of the position constraints, their 

first and second derivatives with respect to time in 

the differential equations. Numerical examples 

illustrate the effectiveness of the proposed numer- 

ical method. 

2. Equations of Motion of 
Constrained Systems 

The equations of motion of a system modeled 

by an n-degree-of-freedom lumped mass-spring- 

dashpot system can be written as 

MS~(t) +Cx( t )  + K x ( t )  = E f ( t )  (1) 

where M, C, and K are, respectively, the n X n 

mass, damping, and stiffness matrices, x(t) is the 

n-dimensional  displacement vector, and f(t) is 

an r-vector representing applied load or external 

excitation. The n X r matrix E is location matrix 

which defines locations of the excitation. 

Assume that the n degree-of-freedom system is 

constrained by the m consistent constraints of the 

form 

¢i(x,  t ) = 0 ,  i = 1 ,  2, " ' ,  m (2) 

and m <  n. The constrained motion requires the 

constraint force such that the state variables satis- 

fy the constraint sets. Therefore, the general equa- 

tions of motion at time t of the constrained system 

can be expressed as 

M ~ = F ( x ,  x, t) +F~(x ,  x, t) (3) 

where F (x ,  x, t) = - C ~ : ( t )  - K x ( t )  + E f ( t ) ,  and 

FC(x, ~:, l) is the n-dimensional  constraint force 

vector. 

Assuming that the constraint equations are suf- 

ficiently smooth, a proper differentiation of Eq. 

(2) with respect to time t leads to the linear set of 

equations 

A (x, x, t) ~ = b  (x, x, t) (4) 

where A is an n x n  matrix, and b is an m Xl 

vector. Using Gauss's Principle and elementary 
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linear algebra, and combining Eqs. (1) and (4), 

the generalized inverse method gives constrain- 

ed equations of motion given by 

~ = a + M  -1/2 (AM -~/z) + (b - A a )  (5) 

where a = M - q ? ( x ,  x, l).  This is the first work 

that presents explicit equations of motion for 

constrained systems that do not require any lin- 

earization process for the control of nonlinear 

systems and can explicitly describe the motion of 

holonomically and/or  nonholonomically con- 

strained systems. 

However, the numerical integration results of 

the differential equations (5) veer away from the 

constraints. The integration of the constrained 

equations of motion that involve the second 

derivatives of position constraints with respect to 

time leads to the errors in the satisfaction of the 

constraints caused by the neglect of the position 

constraints and their first derivatives in time. 

Thus, starting from the generalized inverse meth- 

od, this study presents a modified equation of 

motion for more accurate results. 

3. Errors in the Sat i s fact ion  of  

Constraints  

To investigate the errors developed during nu- 

merical integration of the differential equation, 

consider a three-DOF system subjected to a con- 

straint. As shown in Fig. 1, the state variable 

vector, which describes the configuration space 

of the system, is denoted by q =  [q~ qz qa] r. The 

unconstrained equations of motion for this system 

is given by 

M t j + C ~ I + K q = P ( t )  (6) 

Assuming that this system is constrained by a 

constraint 

~x = qt--  3q2--0 (7) 

ol o2 o3 

r -~  "\\" ' / ~ V  

"., \ , , \  \ \ \ \ \ \ \ \ \ "-,, \ .  

Fig. I A three-DOF system 

and differentiating Eq. (7) twice and expressing 

A ~ = b  of Eq. (4), we obtain 

~ = ~ 1 - 3 ~ = 0  (8) 

The physical values for the numerical application 

selected are 

m~=rn~=3units, m~=l  unit, (9) 
k~=3OOunits, k~:2OOunits, k~=lOOunits 

The damping coeffients are selected so that the 

damping ratio of each mode is 0.02 and the ex- 

ternal excitation vector used is P ( t )  = [300 s in  6t 

500 cos 3t 0~ r. For numerical integration of the 

constrained equations of motion, the local toler- 

ance for the Runge Kutta scheme is set at 10 -~. 

When the differential equations are integrated by 

a numerical integration scheme, the state variables 

must satisfy the constraint equation (7) at all 

times. To investigate the errors in the satisfaction 

of the constraints, which are the position con- 

straint and its first derivative with respect to time, 

we define the errors as 

Error l=q~--3q2 and Error 2=01--30z  (10) 

Figure 2 shows the errors given by Eq. (10). It 

can be observed that the numerical solutions of 

the differencial equations proposed by Udwadia 

and Kalaba are found to gradually veer away 

from the constraints, and the errors increase with 

time. Recognizing that the generalized inverse 

method involves only the second derivatives of 

the position constraints with respect to time, it 

can be interpreted that the errors are caused by 

the neglect of the position constraints and their 

first derivatives with respect to time. The errors 

0 

: /  i : ! 
• > "  " : • i : EF;q0P2 , '  

: i ] : 

Fig. 2 Errors in the satisfaction of the constraints 
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can be reduced by the action of an addi t ional  

force which is needed to pull  the deviated state 

variables into the posit ion constraints and their 

first derivatives with respect to time. Thus, the 

modified equat ions of motion consider the effects 

of the posit ion constraints and their first deriva- 

tives with respect to time. 

4 .  N u m e r i c a l  I n t e g r a t i o n  S c h e m e  

Assuming that the constraint  equat ions are suf- 

ficiently smooth and taking the total derivatives 

of the set (2), and using the chain rule, we obtain 

the following equat ions 

q~ n -- - -0  (11) i-- .=~ 8 x T X ~ - t - ~ t  - - '  , i = 1 ,  2, "" ,  m 

These equat ions are differentiated, provided the 

functions ~)x~ and - -  are sufficiently smooth, to 

yield the set of  equat ions 

• . " a¢~ . .  " " 0 ~¢~ . . 
j=I OXj j=lk=l dXk ( {)Xj ) 

+,-¢ ,a[3~b, \ .  _ ~  3 [&.b,\ .  _O~b, ^ (12) 
2, X j " 7 2 5  Xt~l- ~,2 = U  

i=1, 2, -", m 

Equat ion (12) can be cast into the form A R = b .  

Consider ing the effects of all three constraint  

equations,  they are combined as 

~ ,+a~q~+~,qS~=0,  i = 1 ,  2, "--, m (13) 

o r  

f i + R H + S H = O  (14) 

where a~s and fl~s are positive values, and 

H=[~b, q52 . . .  ~b=l  r 

R =  0 a~ ... £ ... °o 
i : ". and S = • , : " , .  

0 0 ... 0 ... 

15) 

Also, as the result of  combing those constraint  

equat ion sets, AS¢=b  is replaced by 

A ~ = b - R H - S H  (16) 

where 
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a¢, 
8x~ 

0¢2 
A =  8x~ 

8q5= 
8x,  

&2 8x. 
3¢~ ... OqS., 
8x2 8x, 

; ".. ; 

a¢~ aCm 
c3X2 OXn 

(17) 

n ~ n n ~2 

n n n n ~2 

~: = "k j := "~ = "h & 

5~2,  x~xj+2 x j + 2 -  - -  x~+ ,,2 

Consequently,  the original  equat ions of motion 

(5) for the constrained systems are modified as 

~ = a + M  -~/2 (AM -1/2) + ( b - R H - S H - A a )  (19) 

We can alternatively think of Eq. (13) as the 

equat ions of motion of m second-order  dynamic 

systems. The a;s and /3~s are damping  coefficient 

and stiffness of i - th  oscillator, respectively. Let 

us call Eq. (13) i th dynamical  error equation.  

The terms Gi6i+/~iq~i in Eq. (13) play an impor- 

tant role for reducing the errors in the satisfac- 

tion of the constraints. The coefficients a'~ and /~ 

need to be selected in such a way that the errors 

in the satisfaction of the constraints ~bi and ~ are 

damped out rapidly. 

Baumgarte (1972) discussed the proper choice 

of the values of the coefficients el and /~i in Eq. 

(13) for reducing numerical  errors and suggested 

positive values for the parameters a,i and fl, cor- 

responding to i - th  oscillator. His method con- 

sidered the dynamical  error equat ions as de- 

coupled equat ions in which the u n k n o w n  coeffi- 

cients involved in each of the m dynamical  error 

equat ions are independent ly selected. 

Each of the m dynamical  error equat ions can 

be looked upon as an oscillator and shows three 

types of motion depending on the values of the 

coefficients a'i and fli, critically damped motion, 

underdamped motion, and overdamped motion. 

The type of motion depends on the quanti ty ct 2 -  

4fli corresponding to i th oscillator. If a ~ - - 4 / ~ <  

0, an underdamped system is obtained.  If a~i--4 

fl,.=O, a critically damped system is obtained.  

And if a~,---4fli>0, an overdamped system is 
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obtained. Baumgarte selected the values of the 

unknowns corresponding to the critically damped 

motion with values of a'~<20. 

In order to investigate the variations of the 

errors according to the values of a~ and fl~ for the 

above system, let us define the magnitude of the 

errors in the satisfaction of constraints caused by 

numerical procedure as 

E l  = ~  f0  T/( q l  - -  3 ~/2) 2~/~ ( 2 0 )  

and E 2 = ~ f o  r" (0~ 3Oz) 2dt (21) 

where T / i s  30 seconds. 

Figures 3 and 4 show the variations of E~ and 

E2 according to the coefficients a and fl, where 

the values of a range from 0 to 20 in increments 

of 2 and the values of /5' corresponds to the 

underdamped, critically damped, and overdamp- 

ed system. The minimum value of E~ occurs at 

a = 2 0  and fl=200, while the minimum value of 

Ea occurs at a=18.0  and fl=16.2. The parameter 

values a and /5' for minimizing E~ and £'2 corre- 

..... : . . . . . . . .  i i : . . . . . . . . . . .  

c,~ t . . . . .  ! -  : : . . . . . . .  '<"- - .  : " i  . . . .  : 

~. .  -i . . . . . . .  i ..... ~.. i . . . . . . . . . .  L i 

......... 0 . . . . .  " ~ ~ ~ ~  ~ B _ ~ : ~ . _ . ~ _ ~ _  e~_~ E r  .. . . .  ;.:::::5 ~7::>=.. ..... ~i ~ - i  "i ........ i.: 0~, 

- . ~ L _ "  ......... ~ 9 . -  ) ~''~'===-, o~ ' ~° 
~' - " r o - ~  

Fig. 3 Variation of the magnitude of error I 

i i i l / i  :! . . . . . . . .  i ii11111--i ...... iiiiii ...... ,, 
.ILTil L ilil1-11171111 iiiiiiii-ii-iiiii 

• l p n q  U , , o  

Fig. 4 Variation of the magnitude of error 2 
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spond to an underdamped and an overdamped 

system, respectively. 

Figure 5 compares the error E1 to be taken for 

a ,= /3=0  and a=20 ,  /3=200 and £'2 for a = f l = 0  

and a=18.0,  /3=16.2. For a ,= f l=0 ,  the original 

equations of motion for constrained systems are 

obtained, and Et and E2 do not show the mini- 

mum at the same values. From this plot, it is 

observed that the additional force caused by the 

position constraints and their first derivatives 

with respect to time leads to decreased errors. 

Also, it is exhibited that the error is not totally 

damped out and the reduction of the errors large- 

ly depends on the selection of the parameter 

values. 
In order to reduce the errors in the satisfaction 

of multiple constraints, assume that the above 

system is constrained by an additional constraint 

q52 = q, ÷ q2 + qa = 0  (22) 

Fig. 5 

• ~ o -~ 

'[ ........ il ............................................. ! : / T 

. . . . .  ~ -- : . . . . .  ! ...... ~b~,~=i,t~=0 ! .... >+"- 

........ ! .............. 

T~E(SEC ) 

(a) Error 1 

TtME(SEC.) 

(b) Error 2 

Comparison of the errors according to the 

selected parameter values 
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By properly differentiating two constraints (7) 

and (22) with respect to time t, .these constraint  

equat ions in the form of Eg. (14) can be ex- 

pressed as 

A=[II - 3 0  
1 1 ] '  ( 2 3 )  

b RH SR [ -a~(q,-3qz)-~,(q,-3qz) 

where the parameters 0"t, ~2, fit, and /~z have 

positive values. 

Figure 6 shows the magni tude of the errors 

defined by Eqs. (20) and (21). and 

E ~ = ~ ( L r ' ( q ~  + qz+ q~) ~dt (24) 

I / f ~ ,  and E , = ~ V  jo (O~+Oz+Oa)Zdt (25) 

As shown by Fig. 6, the min imum values of both 

E~ and E~ occurred at the same values of 0 '=20  

and f l=200 ,  while the mi n i mu m values of Es and 

E ,  occur at 0"=20, f l=180 ,  and 0"=18, f l=145.8 ,  

respectively. The difference of Figs. 3 and 6(a) ,  

or Figs. 4 and 6(b) is due to the coupling of the 

dynamical  error equat ions through the parame- 

ters. The errors in the satisfaction of i - th  con- 

straint are not independently affected by the 

parameter values 0"~ and fli but  in terdepently. 

This means that the error in the satisfaction of 

each constraint  is a function of all the parameters 

present. General iz ing this scheme, the matrices R 

and S in Eq. (14) are replaced by 

~" ~'~ " ~ " I  I ~ "  ~'-~ " ~"1 

respectively• 

The dynamical  error equat ions are coupled by 

the coefficient matrices, and the matrices are 

selected such that the errors are rapidly damped 

out. Substi tuting I - I = e a t U  into the dynamical  

error equat ion (14), we obta in  

( A q  + A R  + S )  U e  ~' = 0  (27) 

:' - # !  . . . . . .  :: i . . . . . . . .  i . . . . .  ::. i . . . . .  ::-- i 

(a) E~ 

. . . . . . .  ~ -~ . . . . .  i i .... iii il . . . . . .  

: . . . . .  i . . . . . . .  : . . . .  t - ~ . .  i ! . . . . . .  
.... ~- : i .. .... i .i i - ,!.. . : 

.... ~'~i ..... i .... -. ~ ...... i ...... ! ! 

(c) E~ 

1 0 '  i "  
• . . . . . v  " •  • . . . . .  . . 

. . :  • - - i  i . ~ . :. " :  . .  
. - ..... . . . . . .  ~- -- . . . i 

, i . ~ ,  b ° * ,  

(b) Ez 

, . . :  : i i i i i i . l i i i i i i l l  . . . . .  ~ . . . . . .  : 

• ~ : • : i " i . i : 

(d) E4 

Fig. 6 Comparison of the magnitude of errors 
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where the values of 2 are eigenvalues. Because 

U:#0, the eigenvalues satisfying , , ]2I+/]R+S=0 

must have negative real part so that H ~ 0 with 

! ~ oo. It has been demonstrated that the errors 

in the satisfaction of the muhiple constraints can 

be reduced by inserting the position constraints 

and their first derivatives with respect to time into 

the original equation of motion and selecting the 

proper coefficient matrices with the eigenvalues 

possessing negative real parts. 

5. Conclusions  

Most of the methods For describing the con- 

strained motion depend on numerical approaches 

such as I_agrange multiplier's method expressed 

in differential/algebraic system. The equations of 

motion for constrained systems proposed by Ud- 

wadia and Kalaba have an advantage in that they 

explicitly describe the constrained motion. How- 

ever. the numerical integration of the differential 

equations gradually vecr away from thc given 

constraints with time. The errors in the satisfacti- 

on of the constraints are caused by the neglect of 

the position constraints and their first derivatives 

with respect to time. Thus, starting from the gen- 

eralized inverse method, the present study pro- 

poses a numerical method lbr reducing the errors 

by inserting the effects of the position constraints 

and their first derivatives with respect to time into 

the original constrained equations of motion. The 

modified equations of motion tbr constrained 

systems can more accurately describe the con- 

strained motion by reducing the errors in the 

satisfaction of constraints. 
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